
Coordination Simulation
Documentation

Release 0.9.1

Stefan Schneider

Jul 12, 2019





Contents:

1 Introduction 1

2 Application Structure 3

3 Operation Flow 5

4 Input Parameters 7

5 Running the simulator 9

6 Indices and tables 11

i



ii



CHAPTER 1

Introduction

This discrete-event flow-based simulator is a fast testbed for VNF coordination algorithms. It is designed to simulate
small to medium sized networks with relatively close-to-reality accuracy. It can interact with coordination algorithms
via an interface that can be adapted to by the developers of the algorithms.

The simulator is based on SimPy and is tested with Python 3.6.

Project owner: Stefan Schneider, MSc, University of Paderborn.

Developers: - Haydar Qarawlus, MSc. CS student, University of Paderborn. - Adnan Manzoor, MSc. CS student,
University of Paderborn. - Sven Uthe, MSc, University of Paderbron.

1



Coordination Simulation Documentation, Release 0.9.1

2 Chapter 1. Introduction



CHAPTER 2

Application Structure

The file structure of the simulator is as follows: - docs (Folder): Contains the doumentation files of the project. -
params (Folder): Contains sample parameter files (network file and VNF file) for testing purposes. - src (Folder):
Contains the source code for the simulator and the interface. - coordsim (Folder): contains the source code of the
simulator - metrics (Folder): contains the metrics module. - network (Folder): contains the network module. - reader
(Folder): contains the params file reader module. - simulation (Folder): main simulator module. - main (Python):
main executable for running the simulator from CLI - siminterface (Folder): contains the interface source code - tests
(Folder): contains the unit tests for the simulator.

The main modules of the application are the following:

1. Simulation Module: This module contains FlowSimulator and SimulatorParams files. FlowSimulator is the main
simulator that imports and utilizes the other modules. SimulatorParams is the class used to hold all the simulator
parameters, this allows the parameters to be changed mid-simulation by the calling coordination algorithm.

2. Network Module: This module contains the Flow descriptor class. this class holds the main properties of the
flow such as the data rate and the requested SFC, etc.

3. Reader Module: This module holds the network reader file that parses the parameter YAML and GraphML files
that identify the network and the available SFCs and SFs.

4. Simulation Module: This module contains the main flow simulator. The flow simulator obtains its parameters
from the SimulatotParams class. The params class is created by the calling coordination algorithm.

3



Coordination Simulation Documentation, Release 0.9.1

4 Chapter 2. Application Structure



CHAPTER 3

Operation Flow

The simulator works as follows: The user (coordination algorithm or cli) provide two main inputs for the simulator:
- Network file: GraphML file using the Zoo format. This file contains the network nodes and the edges. - VNF file:
YAML file that includes the list of SFCs and the list of SFs under each SFC in an ordered manner. The file can also
include a specifiecd placement that can be used as a default placement. The SFs must include a processing delay mean
and standard deviation values so that processing delays can be calculated for each flow passing through that SF.

Once the parameters are provided, the flow of data through the simulator is as follows:

1. The input network and VNF files are parsed producing a NetworkX object containing the list of nodes and
edges, and the shortest paths of the network (using Floyd-Warshall). The parsing also produces dictionaries that
contain the list of SFCs and the list of SFs and their respective values. Additionally, the list of ingress nodes
(nodes at which flows arrive) are also calculated from the GraphML file. These parameters are then passed to a
SimulatorParams object, which holds all the parameters of the simulator, the simulator is then started using the
FlowSimulator object’s start() function

2. At each ingress node, the function generate_flow() is called as a SimPy process, this function creates
Flow objects with exponentially distributed random inter arrival times. The flow’s data rate and size are gener-
ated using normally distributed random variables. All of the inter arrival time, data rate, and flow size parameters
are user configurable. The flow is also assigned a random SFC chosen from the list of available SFC given in
the VNF file.

3. Once the flow is generated, init_flow() is called as a SimPy process which initializes the handling of the
flow within the simulator. The function then calls pass_flow(), which then handles the scheduling of the
flow according to the defined load balancing rules (flow schedule). Once the next node has been determined, the
forwarding of the flow is simulated by halting the flow for the path delay duration using the forward_flow()
function. Once that is done, the processing of the flow is simulated by calling process_flow() as a SimPy
process. If the requested SF was not found at the next node, the flow is then dropped.

4. In process_flow(), the processing delay for that particular SF is generated using given mean and standard
deviation values using a normal distribution. The simulator checks the node’s remaining processing capacity to
check if the node can handle the data rate requested by the SF, if there is not enough capacity, then the flow is
dropped. For the duration that the flow is being processed by the SF, the flow’s data rate is deducted from the
node’s capacity, and returned after the flow finished processing completely.

5



Coordination Simulation Documentation, Release 0.9.1

5. Once the flow was processed completely at each SF, depart_flow() is called to register the flow’s departure
from the network. If the flow still has other SFs to be processed at in the network, process_flow() calls
pass_flow() again in a mutually recursive manner. This allows the flow to stay in the SF for processing,
while the parts of the flow that were processed already to be sent to the next SF.

6 Chapter 3. Operation Flow



CHAPTER 4

Input Parameters

The available input parameters that are configurable by the user are: - d: The duration of the simulation (simulates
milliseconds). - s: The seed to use for the random number generator. - n: The GraphML network file that specifies the
nodes and edges of the network. - sf: VNF file which contains the SFCs and their respective SFs and their properties.
- iam: Inter arrival mean of the flows’ arrival at ingress nodes. - fdm: The mean value for the generation of data rate
values for each flow. - fds: The standard deviation value for the generation of data rate values for each flow. - fss: The
shape of the Pareto distribution for the generation of the flow size values.

7



Coordination Simulation Documentation, Release 0.9.1

8 Chapter 4. Input Parameters



CHAPTER 5

Running the simulator

The simulator application is called coord-sim To run the simulator, the following call may be executed:

coord-sim -d 20 -n params/networks/triangle.graphml -sf params/services/abc.yaml -c
→˓params/config/sim_config.yaml

This will run the coord-sim simulator to simulate the given network and vnf parameter files for 10ms (environment
time).

9



Coordination Simulation Documentation, Release 0.9.1

10 Chapter 5. Running the simulator



CHAPTER 6

Indices and tables

• genindex

• modindex

• search

11


	Introduction
	Application Structure
	Operation Flow
	Input Parameters
	Running the simulator
	Indices and tables

